Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(11): 7806-7824, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38444964

RESUMO

Gas sensors based on nanostructured semiconductor metal oxide (SMO) materials have been extensively investigated as key components due to their advantages over other materials, namely, high sensitivity, stability, affordability, rapid response and simplicity. However, the difficulty of working at high temperatures, response in lower concentration and their selectivity are huge challenges of SMO materials for detecting gases. Therefore, researchers have not stopped their quest to develop new gas sensors based on SMOs with higher performance. This paper begins by highlighting the importance of nitrogen monoxide (NO) and nitrogen dioxide (NO2) detection for human health and addresses the challenges associated with existing methods in effectively detecting them. Subsequently, the mechanism of SMO gas sensors, analysis of their structure and fabrication techniques focusing on electrospinning technique, as well as their advantages, difficulties, and structural design challenges are discussed. Research on enhancing the sensing performance through tuning the fabrication parameters are summarized as well. Finally, the problems and potential of SMO based gas sensors to detect NOx are revealed, and the future possibilities are stated.

2.
Tissue Eng Part A ; 30(7-8): 340-356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962275

RESUMO

In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. In vivo tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested in vitro using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating in vivo, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.


Assuntos
Líquidos Iônicos , Nanofibras , Perfuração da Membrana Timpânica , Camundongos , Animais , Humanos , Coelhos , Celulose/farmacologia , Membrana Timpânica , Quitina/farmacologia , Células Endoteliais , Nanofibras/química , Alicerces Teciduais/química
3.
Sci Rep ; 13(1): 16412, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775537

RESUMO

Piezoelectric nanogenerators (PENGs) have attracted great interest owing to their broad range application in environmental mechanical energy harvesting to power small electronic devices. In this study, novel flexible and high-performance double-layer sandwich-type PENGs based on one-dimensional (1-D) and two-dimensional (2-D) zinc oxide (ZnO) nanostructures and Ni foam as the middle layer have been developed. The morphology and structure of 1- and 2-D ZnO nanostructures have been studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). To investigate the effect of structural design on the piezoelectric performance, single-layer PENGs were also fabricated. The piezoelectric output of all prepared PENGs were evaluated under different human impacts at various forces and frequencies. The double-layer designed PENGs showed a two times larger voltage output compared to the single-layer PENGs, and the use of Ni foam as middle-layer and of 2-D ZnO nanosheets (compared to 1-D nanorods) was also found to increase the performance of the designed PENGs. The working mechanism of the prepared PENGs is also discussed. The design of nanogenerators as double-layer sandwich structures instead of two integrated single-layer devices reduces the overall preparation time and processing steps and enhances their output performance, thus opening the gate for widening their practical applications.

4.
ACS Appl Mater Interfaces ; 15(35): 41806-41816, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610412

RESUMO

Over the past few decades, flexible piezoelectric devices have gained increasing interest due to their wide applications as wearable sensors and energy harvesters. Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), as one of piezoelectric polymers, has caught considerable attention because of its high flexibility, high thermal stability, and biocompatibility. However, its relatively lower piezoelectricity limits its broader applications. Herein, we present a new approach to improving the piezoelectricity of PVDF-TrFE nanofibers by integrating barium titanate (BTO) nanoparticles. Instead of being directly dispersed into PVDF-TrFE nanofibers, the BTO nanoparticles were electrosprayed between the nanofiber layers to create a sandwich structure. The results showed that the sample with BTO sandwiched between PVDF-TrFE nanofibers showed a much higher piezoelectric output compared to the sample with BTO uniformly dispersed in the nanofibers, with a maximum of ∼ 457% enhancement. Simulation results suggested that the enhanced piezoelectricity is due to the larger strain induced in the BTO nanoparticles in the sandwich structure. Additionally, BTO might be better poled during electrospraying with higher field strength, which is also believed to contribute to enhanced piezoelectricity. The potential of the piezoelectric nanofiber mats as a sensor for measuring biting force and as a sensor array for pressure mapping was demonstrated.

5.
Int J Occup Saf Ergon ; 29(4): 1515-1522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475305

RESUMO

Objectives. This study aimed to optimize modification of cotton-polyester textiles of workwear in terms of air permeability (AP), bending stiffness (BS) and near-infrared (NIR) reflectance using nanometal-embedded polymethyl methacrylate (PMMA) polymer by a spray method. Methods. This experimental study was carried out to modify cotton-polyester textiles using nanoparticles of aluminum oxide (Al2O3), tin oxide (SnO) and zinc oxide (ZnO) embedded in PMMA polymer with different weight percentages by a spray method under 215-psi pressure. The surface temperature of the textiles induced by the NIR spectrum and their comfort in terms of AP and BS were measured according to Standard No. ASTM D737 and BS 3356, respectively. Results. Cotton (65%)-polyester (35%) textiles can be modified with a PMMA-based aluminum and zinc nanoparticle composite with equal weight percentage using a pressurized spray method with good durability. Also, most NIR reflection is in the textile coated with aluminum and ZnO nanoparticle composite in the PMMA base. Conclusions. It is recommended that this composite be used in future studies to impregnate the clothing textile of outdoor workers in hot and arid regions by a spray method under pressure and its effects be investigated on reducing heat stress in these workers.


Assuntos
Polimetil Metacrilato , Óxido de Zinco , Humanos , Temperatura , Óxido de Zinco/farmacologia , Polímeros , Alumínio , Têxteis , Poliésteres
6.
RSC Adv ; 13(1): 370-387, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36683768

RESUMO

Polyvinylidene fluoride (PVDF) is a favorite polymer with excellent piezoelectric properties due to its mechanical and thermal stability. This article provides an overview of recent developments in the modification of PVDF fibrous structures and prospects for its application with a major focus on energy harvesting devices, sensors and actuator materials, and other types of biomedical engineering and devices. Many sources of energy harvesting are available in the environment, including waste-heated mechanical, wind, and solar energy. While each of these sources can be impactively used to power remote sensors, the structural and biological communities have emphasized scavenging mechanical energy by functional materials, which exhibit piezoelectricity. Piezoelectric materials have received a lot of attention in past decades. Piezoelectric nanogenerators can effectively convert mechanical energy into electrical energy suitable for low-powered electronic devices. Among piezoelectric materials, PVDF and its copolymers have been extensively studied in a diverse range of applications dealing with recent improvements in flexibility, long-term stability, ease of processing, biocompatibility, and piezoelectric generators based on PVDF polymers. This article reviews recent developments in the field of piezoelectricity in PVDF structure, fabrication, and applications, and presents the current state of power harvesting to create completely self-powered devices. In particular, we focus on original approaches and engineering tools to design construction parameters and fabrication techniques in electro-mechanical applications of PVDF.

7.
Tissue Eng Part A ; 26(23-24): 1312-1331, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32842903

RESUMO

Due to the morbidity and lethality of pulmonary diseases, new biomaterials and scaffolds are needed to support the regeneration of lung tissues, while ideally providing protective effects against inflammation and microbial aggression. In this study, we investigated the potential of nanocomposites of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] incorporating zinc oxide (ZnO), in the form of electrospun fiber meshes for lung tissue engineering. We focused on their anti-inflammatory, antimicrobial, and mechanoelectrical character according to different fiber mesh textures (i.e., collected at 500 and 4000 rpm) and compositions: (0/100) and (20/80) w/w% ZnO/P(VDF-TrFE), plain and composite, respectively. The scaffolds were characterized in terms of morphological, physicochemical, mechanical, and piezoelectric properties, as well as biological response of A549 alveolar epithelial cells in presence of lung-infecting bacteria. By virtue of ZnO, the composite scaffolds showed a strong anti-inflammatory response in A549 cells, as demonstrated by a significant decrease of interleukin (IL) IL-1α, IL-6, and IL-8 expression in 6 h. In all the scaffold types, but remarkably in the aligned composite ones, transforming growth factor ß (TGF-ß) and the antimicrobial peptide human ß defensin-2 (HBD-2) were significantly increased. The ZnO/P(VDF-TrFE) electrospun fiber meshes hindered the biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa and the cell/scaffold constructs were able to impede S. aureus adhesion and S. aureus and P. aeruginosa invasiveness, independent of the scaffold type. The data obtained suggested that the composite scaffolds showed potential for tunable mechanical properties, in the range of alveolar walls and fibers. Finally, we also showed good piezoelectricity, which is a feature found in elastic and collagen fibers, the main extracellular matrix molecules in lungs. The combination of all these properties makes ZnO/P(VDF-TrFE) fiber meshes promising for lung repair and regeneration. Impact statement Airway tissue engineering is still a major challenge and an optimally designed scaffold for this application should fulfill a number of key requirements. To help lung repair and regeneration, this study proposes a nondegradable scaffold, with potential for tuning mechanical properties. This scaffold possesses a strong anti-inflammatory character, and is able to hinder microbial infections, sustain epithelial cell growth, and provide physiological signals, like piezoelectricity. The development of such a device could help the treatment of pulmonary deficiency, including the ones induced by inflammatory phenomena, primary and secondary to pathogen infections.


Assuntos
Pulmão , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Células A549 , Aderência Bacteriana , Humanos , Hidrocarbonetos Fluorados , Polivinil , Pseudomonas aeruginosa , Staphylococcus aureus , Compostos de Vinila
8.
RSC Adv ; 10(58): 35090-35098, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515651

RESUMO

Ceramic doped-polymer structures as organic and inorganic hybrid structures constitute a new area of advanced materials for flexible and stretchable sensors and actuators. Here, uniform ceramic-polymer composites of tetragonal BaTiO3 and polyvinylidene fluoride (PVDF) were prepared using solution casting to improve the pressure sensitivity. By introducing Ba-TiO3 nanoparticles to PVDF nanofibers, piezoelectricity and pressure sensitivity of hybrid nanofiber mats were significantly improved. In addition, we proposed a novel flexible and stretchable multilayered pressure sensor composed of electrospun nanocomposite fibers with high electrical sensitivity up to 6 mV N-1 compared to 1.88 mV N-1 for the pure PVDF sensors upon the application of cyclic loads at 2.5 Hz frequency and a constant load of 0.5 N. Indeed, this work provides a composition-dependent approach for the fabrication of nanostructures for pressure sensors in a wide variety of wearable devices and technologies.

9.
Cell Biol Int ; 43(12): 1365-1378, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30791186

RESUMO

Using cell-based engineered skin is an emerging strategy for treating difficult-to-heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue-derived mesenchymal stem cells (AD-MSCs) and keratinocytes on gelatin/chitosan/ß-glycerol phosphate (GCGP) nanoscaffold in full-thickness excisional skin wound healing of rats. For this purpose, AD-MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes-AD-MSCs-scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD-MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.

10.
RSC Adv ; 9(18): 10117-10123, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520929

RESUMO

This study aimed to develop a novel hybrid piezoelectric structure based on poly(vinylidene difluoride) nanofibers (PVDF NFs) and zinc oxide nanorods (ZnO NRs) which eliminate the need for post poling treatment in such hybrid structures. Mechanism of electrical performance enhancement of the hybrid structure is also discussed in this paper. To study the effect of hybridization on piezoelectric performance, pristine ZnO NRs and pristine PVDF NF nanogenerators were also fabricated. The piezoelectric performance of these three nanogenerators was evaluated under periodic deformation at low frequency. The output power of the hybrid structure was found to be enhanced compared to pristine ZnO NRs and PVDF NFs nanogenerators. Such simple hybrid devices that do not need to complicated post poling treatment are more efficient than previous hybrid PVDF/ZnO nanogenerators for practical application. This improved piezoelectric nanogenerator is expected to enable various applications in the field of self-powered devices and wearable energy harvesting to harvest mechanical energy from the human activities.

11.
Biopolymers ; 105(3): 163-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26566174

RESUMO

Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics.


Assuntos
Quitosana/química , Gelatina/química , Glicerofosfatos/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Masculino , Microscopia Eletrônica de Varredura , Nanoestruturas , Ratos , Ratos Wistar
12.
J Biomed Mater Res A ; 102(3): 903-10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23554325

RESUMO

In this article the pore structure and porosity parameters of polycaprolactone (PCL) nano-microfibrous scaffolds are investigated using a predicting theoretical model and a nondestructive evaluation approach based on confocal laser scanning microscopy (CLSM) and three-dimensional image analysis. Different fibrous scaffolds with different fiber diameters produced by electrospinning process and their 3D-pore structure were evaluated theoretically and also compared to results of CLSM and capillary flow porometery methods. The effect of polymer concentration on the pore structure of scaffolds was also investigated. The results showed that, the introduced approach not only can measure the pore size distribution of nanofibrous scaffolds, but also can measure pore interconnectivity of fibrous scaffolds. Furthermore, the results showed that increasing the fiber diameter resulted from increasing the polymer concentration in solvent can effectively increase the pore dimensions within the scaffold structure.


Assuntos
Nanofibras/química , Poliésteres/química , Alicerces Teciduais/química , Imageamento Tridimensional , Nanofibras/ultraestrutura , Porosidade
13.
J Biomed Mater Res A ; 101(7): 2107-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23426993

RESUMO

Electrospinning process can fabricate nanomaterials with unique nanostructures for potential biomedical and environmental applications. However, the prediction and, consequently, the control of the porous structure of these materials has been impractical due to the complexity of the electrospinning process. In this research, a theoretical model for characterizing the porous structure of the electrospun nanofibrous network has been developed by combining the stochastic and stereological probability approaches. From consideration of number of fiber-to-fiber contacts in an electrospun nanofibrous assembly, geometrical and statistical theory relating morphological and structural parameters of the network to the characteristic dimensions of interfibers pores is provided. It has been shown that these properties are strongly influenced by the fiber diameter, porosity, and thickness of assembly. It is also demonstrated that at a given network porosity, increasing fiber diameter and thickness of the network reduces the characteristic dimensions of pores. It is also discussed that the role of fiber diameter and number of the layer in the assembly is dominant in controlling the pore size distribution of the networks. The theory has been validated experimentally and results compared with the existing theory to predict the pore size distribution of nanofiber mats. It is believed that the presented theory for estimation of pore size distribution is more realistic and useful for further studies of multilayer random nanofibrous assemblies.


Assuntos
Microtecnologia/métodos , Microtecnologia/estatística & dados numéricos , Nanofibras , Algoritmos , Tubo Capilar , Eletroquímica , Previsões , Microscopia Eletrônica de Varredura , Nanoestruturas , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Alicerces Teciduais
14.
J Biomed Mater Res A ; 101(3): 765-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22961915

RESUMO

Specific internal pore architectures are required to provide the needed biological and biophysical functions for fibrous scaffolds as these architectures are critical to cell infiltration and in-grows performance. However, the key challenging on evaluating 3D pore structure of fibrous scaffolds for better understanding the capability of different structures for biological application is not well investigated. This article reports a fast, accurate, nondestructive, and comprehensive evaluation approach based on confocal laser scanning microscopy (CLSM) and three-dimensional image analysis to study the pore structure and porosity parameters of Nano/Microfibrous scaffolds. Also a new method of making the fiber fluorescent using quantum dots (QDs) was applied before 3D imaging. Fibrous scaffolds with different porosity parameters produced by electrospinning and their 3D-pore structure was evaluated by this approach and the results were compared to results of capillary flow porometry. The pore structural properties measured in this approach are in good agreement with that measured by the capillary flow porometry (with significant level 0.05). Furthermore, the introduced approach can measure the pore interconnectivity of the scaffold.


Assuntos
Nanoestruturas/química , Pontos Quânticos , Alicerces Teciduais/química , Microscopia Confocal , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA